
International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

195

“DATASET TO MODEL: OPTIMIZATION OF
IMAGE CLASSIFICATION WITH NEURAL

NETWORKS”

Ruchi Sharma
 M. Tech Scholar,

 Somany Institute of Technology & Management,
Affiliated to MDU, Rewari, (Haryana)

Dr. Chander Sekhar

 Professor,
Somany Institute of Technology & Management,

Affiliated to MDU, Rewari, (Haryana)

Abstract: The field of computer vision has seen rapid
growth in recent years, with image classification being
one of the fundamental tasks within the field. In image
classification, a ‘machine learning algorithm’ is trained
to identify and categorize objects within an image. Such
Pre-trained models can be used to save time and
computational resources, as the model has already
learned to extract useful features from the data.

Efficient Net-Lite models, MobileNetV2, and ResNet50
are some of the pre-trained learning models that are
used for image classification tasks. Tensor Flow Lite
Model Maker is a library developed by Open AI that
simplifies the process of adapting a model to specific
input data, which is necessary when deploying the model
to run on a device. The library can be used to convert a
Tensor Flow model into a format that can be run on a
mobile device, such as a smartphone or tablet.

This paper presents a study on the optimization of image
classification using neural networks. The study utilizes a
dataset to train a neural network model and investigate
the impact of various parameters on the accuracy of the
model. The dataset is preprocessed to remove any
outliers and ensure the quality of the data. The neural
network model is then optimized through the use of
different architectures and hyper parameters. The study
shows that the accuracy of the model can be improved
through the use of various optimization techniques.
Overall, this research contributes to the growing body of
knowledge on the optimization of image classification
using neural networks, and provides insights on how to
effectively train a model for improved accuracy.”

Keywords: AI, ML, CNN, ANN, Image Classification,
Optimization, TensorFlow Lite, Accuracy, Framework

I. INTRODUCTION

There is a tremendous growth in recent years due to
advancements in ML and DL techniques. Image
classification is one of the fundamental tasks within
computer vision, where a machine learning algorithm is
trained to identify and categorize objects within an image.
During training, the algorithm learns to associate certain
features within the image with specific classes. Once
training is complete, the algorithm can then be applied to
new, unseen images and predict the class label for each
image based on the features it has learned to recognize.

Fig.1 : shows the process to train the algorithm on labeled
images with class labels and applying it to new images by
recognizing learned features to predict class labels.

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

196

Pre-trained models are machine learning models that have
already been trained on a large dataset and can be used for
tasks in similar domains with minimal additional training.
By using pre-trained models, one can save time and
computational resources as the model has already learned to
extract useful features from the data. EfficientNet-Lite
models, MobileNetV2, and ResNet50 are some of the pre-
trained ML models that are used for image classification
tasks.
TensorFlow Lite Model Maker is a library developed by
OpenAI to make it easier to use TensorFlow neural network
models for on-device machine learning applications. The
library can be used to convert a TensorFlow model into a
format that can be run on a mobile device, such as a smart
phone or tablet.
This paper is on the optimization of image classification
using NN. The study uses a dataset to train a NN model and
explores the impact of various parameters on the accuracy
of the model. The dataset is preprocessed to ensure the
quality of the data, and the neural network model is
optimized using different architectures and hyper
parameters. The accuracy of the model can be increased by
various optimization techniques, such as adjusting the
learning rate, using different activation functions, and
adding more layers to the network.
The findings of this study provide insights on how to
effectively train a model for improved accuracy in image
classification tasks. The study also highlights the
importance of pre-trained models and libraries such as
TensorFlow Lite Model Maker in the field of computer
vision. By using pre-trained models and optimizing the
neural network model, one can improve the accuracy of
image classification tasks and create more robust and
effective computer vision applications.

II. RELATED WORK
TensorFlow Lite Model Maker is related to several other
libraries and tools in the TensorFlow ecosystem that are
used for ML tasks. Here are some of the related works for
TensorFlow Lite Model Maker: TensorFlow: TensorFlow
Lite Model Maker is a high-level library built on top of
TensorFlow, and it is designed to make it easier to use
TensorFlow models for deployment on resource-constrained
devices.
TensorFlow Lite: TensorFlow Lite is a lightweight and
efficient version of TensorFlow that is optimized for
“deployment on resource-constrained devices”. AutoML is
a subfield of machine learning that focuses on automating
the process of model training and deployment. TensorFlow
Lite Model Maker provides a set of pre-made models and
tools for fine-tuning these models, which makes it easier to
use machine learning models without having to write
complex code. PyTorch Mobile: PyTorch Mobile is a
similar library to TensorFlow Lite Model Maker, but it is
built on top of PyTorch, which is another popular machine

learning framework. Like TensorFlow Lite Model Maker,
PyTorch Mobile provides a simple way to adapt and convert
machine learning models for deployment on mobile devices.
“This paper[1] presents a survey on image classification
models based on convolution neural networks (CNNs).
CNNs have become the state-of-the-art technique for image
classification tasks due to their ability to effectively learn
and extract features from raw image data. The paper starts
by introducing the basic concepts of CNNs and their
architecture. Then, it reviews various CNN-based image
classification models proposed in the literature, including
LeNet-5, AlexNet, VGG, GoogLeNet, ResNet, DenseNet,
and MobileNet. For each model, the paper describes its
architecture, training strategies, and performance on
benchmark datasets such as CIFAR-10, CIFAR-100, and
ImageNet. The paper also discusses the challenges and
future research directions in CNN-based image
classification, such as model compression and acceleration,
transfer learning, and multi-modal learning. Overall, this
paper provides a comprehensive overview of CNN-based
image classification models and their potential applications
in various domains.
The paper proposes [2] a novel method for unsupervised
transfer learning through multi-scale convolution sparse
coding (MSCSC) for biomedical applications. The proposed
approach aims to learn common features from a large
amount of unlabeled data and transfer them to related tasks
in a new domain. The effectiveness of the method is
demonstrated through experiments on two different
biomedical datasets.
In this work[3], K. van de Sande, T. Gevers, and C. Snoek
evaluate and compare various color descriptors for object
and scene recognition. The study examines the performance
of various color descriptors, including RGB, HSV,
Opponent Color Space, and various color moments, on a
large dataset of images. The authors demonstrate that
certain color descriptors perform better than others in
different applications, and provide insights into the factors
that affect their performance. Overall, this study provides a
useful reference for researchers working in the field of
computer vision and image recognition.
The paper[4] presents a study on the use of convolutional
neural networks (CNN) for image classification tasks. The
authors investigate the impact of various parameters on the
accuracy of the CNN model, including the number of layers
and filters. The study shows that the CNN model can
achieve high accuracy in image classification tasks, and
highlights the potential of using CNNs for real-world
applications. This research was presented at the 2018 Fourth
International Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN) held
in Kolkata, India.
The paper [5] explores the concept of data augmentation in
deep learning for image classification tasks. The authors
propose various techniques for generating additional

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

197

training data to improve the accuracy of convolutional
neural networks. They conduct experiments on benchmark
datasets and demonstrate the effectiveness of data
augmentation in improving the classification accuracy. The
paper was presented at the 2018 International
Interdisciplinary PhD Workshop (IIPhDW) held in
Świnouście, Poland.”

III. PROPOSED APPROACH
The study utilizes a dataset to train a NN model and
investigate the impact of various parameters on the accuracy
of the model. The dataset is preprocessed to remove any
outliers and ensure the quality of the data. The model is then
optimized through the use of different architectures and
hyper parameters. The study shows that the accuracy of the
model can be enhanced by the use of various optimization
techniques.

Fig.2 : shows the process that begins with the user
providing a labeled dataset, which is used to train the
algorithm. After training, the algorithm's accuracy is

validated and it is then used to predict the class labels of
new images based on learned features.

This research is a study on the optimization of image
classification using NN. Datasets are trained in a NN model
and investigate the impact of various parameters on the
accuracy of the model. The dataset is preprocessed to
remove any outliers and ensure the quality. The “neural
network model” is then optimized through the use of
different architectures and hyper parameters.
The first step in the study was to acquire a dataset.
Specifically, the input data consists of a flower dataset
containing images that are categorized into 5 distinct
classes. To organize the dataset, each class is placed in its
own subdirectory within a larger directory structure. To
access the images, the dataset needs to be downloaded in an
archive format and then extracted using a tar utility. The

study utilized the TensorFlow library to preprocess the data,
which involved normalizing the pixel values and performing
one-hot encoding on the labels.

Fig.3 : shows that the flower dataset is first inputted, and then a
directory structure is created to organize the data based on the

five different classes (Tulip, Daisy, Rose, Sunflower, and
Dandelion). Each class is placed in its own subdirectory within

the larger directory structure

The study then investigated the impact of various
parameters on the acc of the model. The parameters
included the “number of layers in the model, the activation
functions, the learning rate, and the batch size”.
In conclusion, “this study demonstrates the effectiveness of
neural networks for image classification tasks and highlights
the importance of optimizing the various parameters and
architecture of the model to achieve the best possible
accuracy. The study also emphasizes the importance of data
preprocessing and data augmentation in improving the
quality of the data and the accuracy of the model. Overall,
this research contributes to the growing body of knowledge
on the optimization of image classification using neural
networks and provides insights on how to effectively train a
model for improved accuracy.”

IV. EVALUATION AND ANALYSIS
pip install -q tflite-model-maker has been used to install the
"tflite-model-maker" library using the Python package
manager. The purpose of installing the tflite-model-maker
library is to provide a bunch of tools for getting trained and
converted models for deployment on mobile and embedded
devices. This library is built on top of TensorFlow Lite and

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

198

provides a simple way to perform transfer learning and fine-
tune pre-made models for a specific task. while the purpose
of installing the libportaudio2 library is to provide support
for audio input and output, which is required by some
applications.

Importing the "os" library, which provides a way to interact
with the operating system. Similarlynumpy as np is
importing the "numpy" library is a library for scientific
computing in Python, and is commonly used for working
with arrays and matrices. Importing tensorflow as tf is for
"tensorflow". The code also includes lines to import various
classes and functions from the tflite_model_maker library.
The model_spec module provides a set of pre-made models
for common machine learning tasks, the image_classifier
module provides a set of tools for performing image
classification, and the DataLoader class provides a way to
load and preprocess data for training.The final line import
matplotlib. pyplot as plt is importing the "matplotlib.pyplot"
library and giving it an alias of "plt".

“data = DataLoader.from_folder(image_path)
train_data, test_data = data.split(0.9)”

The first line, data = DataLoader.from_folder(image_path),
creates an instance of the DataLoader class and loads the
image data from the folder specified by image_path. This
class provides methods for loading and preprocessing data
for training and inference.
The second line, train_data, test_data = data.split(0.9), splits
the loaded data into two sets: training data and testing data.
The split is done by dividing the data into two parts, where
the first part contains 90% of the data and the second part
contains the remaining 10%. The resulting train_data set
will contain 90% of the images and the test_data set will
contain the remaining 10%.
The output of the code model =
image_classifier.create(train_data) is a trained image
classification model of “TensorFlow Lite Model Maker
library.” The image_classifier.create function takes the
training data train_data as an input, and trains a neural
network model on this data. The function then returns the
trained model, which is stored in the variable model. This
model can then be used to make predictions about the class
of new input images. The trained model created by this code
will have learned to recognize different classes of images
based on the patterns and features present in the training
data. This model can then be used for a variety of
applications, such as recognizing and classifying objects in
real-time on a mobile device.
It has a total of 3,420,710 parameters, which are the weights
and biases that the model uses to make predictions. Of these
parameters, 7,686 are trainable, which means that they are
adjusted during training to improve the model's accuracy.
The remaining 3,413,024 parameters are non-trainable,

which means that they are fixed and do not change during
training. These non-trainable parameters may include pre-
trained weights from other models, or they may be fixed to
enforce certain constraints or regularizations.
The number of epochs used in the image_classifier.create
function from the TensorFlow Lite Model Maker library is 5
to 20 and results are as follows as number of epochs can be
customized by passing a train_epochs argument to the create
function.

“Total params: 3,419,429
Trainable params: 6,405
Non-trainable params: 3,413,024

None
Epoch 1/5
103/103 [============+====] - 283s 3s/step - loss:
0.8786 - accuracy: 0.7646
Epoch 2/5
103/103 [===============] - 20s 196ms/step - loss:
0.6566 - accuracy: 0.8956
Epoch 3/5
103/103 [===============] - 20s 194ms/step - loss:
0.6221 - accuracy: 0.9160
Epoch 4/5
103/103 [===============] - 23s 220ms/step - loss:
0.6007 - accuracy: 0.9232
Epoch 5/5
103/103 [===============] - 19s 188ms/step - loss:
0.5881 - accuracy: 0.9378”

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

199

Fig. 4 : shows the results of epochs used 5-10 during

training are having a significant impact on the
performance of the model.

To Conclude: “As the model trains, the loss decreases and
the accuracy increases, indicating that the model is
learning to correctly classify the images in the dataset. By
the end of the training process, the model has achieved a
high accuracy of 95.63% on the training set. The trained
model can then be used to predict the labels of new, unseen
images.”

Fig. 5 and 6 : shows acc increases and loss decreases

Fig. 7 : shows the same trends

Fig. 8 : shows the results and it appears that the model's
loss decreases and accuracy increases with each epoch up

to epoch 15. Beyond that point, the loss and accuracy seem
to plateau, indicating that further training may not result in

significant improvements.

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

200

Fig. 9 and 10 : compares all the models and conclude the

same

Based on the above results for the different number of
epochs, we can observe the following trends:
Loss is slowing down, this is expected since the model is
learning from more training data and adjusting its weights to
minimize the loss. Accuracy slop up, this is also expected
since the model is getting better at predicting the correct
labels as it is exposed to more training data.
As the number of epochs increases, the rate of improvement
in both loss and accuracy starts to slow down. This suggests
that the model is starting to reach its performance limit, and
further training may not yield significant improvements.
Overfitting may occur as the number of epochs increases.
This can be observed in the accuracy score on the training
set being significantly higher than the accuracy score on the
validation set. This implies that the model is starting to
memorize the data rather than learning to generalize to new
data. So, it is important to balance the number of epochs

with the risk of over fitting to achieve the best performance
on new, unseen data.

The number of parameters in a model can impact
its performance and the computational resources it requires,
so it's important to consider when designing and deploying
models.

Further , 12/12 [==============================]
- 39s 3s/step - loss: 0.5934 - accuracy: 0.9237
This is the output of the model evaluation step, which
measures the performance of the model on the test data. The
output shows the progress of the evaluation, with the current
batch and the total number of batches. The output shows
that all 12 batches have been processed.
The loss is a measure of how well the model is able to
predict the correct class for the input images, while accuracy
is the number of correct predictions divided by the total
number of predictions. In this case, the loss is 0.5934 and
the accuracy is 0.9237, which means that the model has
correctly predicted the class for 92.37% of the test images.
The output "12/12" indicates the progress of the evaluation
process. In this case, the evaluation is being performed on
12 batches of data, and the current batch is the 12th one.
The "12/12" output shows that the evaluation process is
complete and all 12 batches of data have been processed.
import tensorflow as tf

V. DISCUSSION AND FUTURE WORK
The code presented shows how to use the “TensorFlow Lite
Model Maker” library to create a “pre-trained model for
image classification”. The library provides a set of pre-made
models for common machine learning tasks and a set of
tools for fine-tuning and deploying models on mobile and
embedded devices. The code also imports various libraries
for scientific computing and visualization, such as numpy
and matplotlib.pyplot.
The DataLoader class is used to load and preprocess the
image data for training and testing. The data is then split
into two sets, where 90% for training and remaining 10%
for testing. This is a common practice in machine learning
to evaluate the model's performance on unseen data.
The image_classifier.create function is then used to create a
model using the training data. The trained model is stored in
the model variable and can be used to make predictions
about the class of new input images.
One limitation of the code is that it does not write the
number of epochs used during training. The default number
is relatively small, that is 5 to train the model. However, the
number of epochs can be customized by passing a
train_epochs argument to the function.
Future work could involve using this pre-trained model for a
specific image classification task and evaluating its
performance on real-world data. The model could also be
fine-tuned on a new dataset to improve its performance on a
specific task. Additionally, the code could be extended to

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

201

support other machine learning tasks, such as object
detection or natural language processing, using the pre-
made models provided by the TensorFlow Lite Model
Maker library.
Moving forward, there are several ways we can extend our
work for different applications:
One can also customize the model architecture for specific
application. This could involve changing the : “number of
layers, the size of the layers, or the activation functions used
in the model”.
One can also fine-tune the model on your specific dataset to
improve its performance. Fine-tuning involves training the
model on a small amount of data specific to your
application, while keeping the pre-trained weights fixed.
This can be a powerful technique for improving model
performance on specific tasks.
Once we have a trained image classification model, we can
deploy it on mobile and embedded devices using
TensorFlow Lite. This involves converting the model to a
TensorFlow Lite format, which is optimized for mobile and
embedded devices, and then integrating the model into your
application. This can be a complex process, but there are
resources available to help you get started, such as the
TensorFlow Lite documentation and the TensorFlow Lite
Model Maker examples.

VI. “REFERENCES
1. L. Peng, B. Qiang and J. Wu, "A Survey: Image

Classification Models Based on Convolutional
Neural Networks," 2022 14th International
Conference on Computer Research and Development
(ICCRD), Shenzhen, China, 2022, pp. 291-298, doi:
10.1109/ICCRD54409.2022.9730565

2. H. Chang, J. Han, C. Zhong, A. M. Snijders and J. -
H. Mao, "Unsupervised Transfer Learning via Multi-
Scale Convolutional Sparse Coding for Biomedical
Applications," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, no. 5, pp.
1182-1194, 1 May 2018, doi:
10.1109/TPAMI.2017.2656884.

3. K. van de Sande, T. Gevers and C. Snoek,
"Evaluating Color Descriptors for Object and Scene
Recognition," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp.
1582-1596, Sept. 2010, doi:
10.1109/TPAMI.2009.154.

4. F. Sultana, A. Sufian and P. Dutta, "Advancements in
Image Classification using Convolutional Neural
Network," 2018 Fourth International Conference on
Research in Computational Intelligence and
Communication Networks (ICRCICN), Kolkata,
India, 2018, pp. 122-129, doi:
10.1109/ICRCICN.2018.8718718.

5. Mikołajczyk and M. Grochowski, "Data
augmentation for improving deep learning in image

classification problem," 2018 International
Interdisciplinary PhD Workshop (IIPhDW),
Świnouście, Poland, 2018, pp. 117-122, doi:
10.1109/IIPHDW.2018.8388338.

6. A comprehensive survey on color-based object
tracking" by Y. Zhang and L. Chen (2014). In ACM
Computing Surveys, vol. 46, pp. 1-38.

7. "Color-based object recognition using adaptive
neuro-fuzzy inference systems" by M.H. Kabir and
M.A. Hossain (2014). In Expert Systems with
Applications, vol. 41, pp. 2595-2603.

8. E. Eidinger, R. Enbar, and T. Hassner. Age and
gender estimation of unfiltered faces. IEEE TIFS,
2014.

9. L.Wolf, T. Hassner, and Y. Taigman. Descriptor
based methods in the wild. In Workshop on faces in
real- life’images: Detection, alignment, and
recognition, 2008.

10. C. Cortes and V. Vapnik. Support-vector networks.
Machine learning, 1995.

11. H. Han, C. Otto, X. Liu, and A. K. Jain.
Demographic estimation from face images: Human
vs. machine performance. IEEE TPAMI, 2015.

12. R. Rothe, R. Timofte, and L. Van Gool. Dex: Deep
expectation of apparent age from a single image. In
ICCV Workshops, 2015.

13. M. Mathias, R. Benenson, M. Pedersoli, and L. Van
Gool. Face detection without bells and whistles. In
ECCV, 2014.

14. https://www.apache.org
15. https://www.tensorflow.org/lite/models/modify/mode

l_maker
16. https://www.tensorflow.org/lite/models/modify/mode

l_maker/image_classification
17. http://archive.ubuntu.com/ubuntu
18. https://github.com/mermaid-js/mermaid-live-editor
19. https://github.com
20. https://www.geeksforgeeks.org/multiple-color-

detection-in-real-time-using-python-opencv/
21. K. Simonyan and A. Zisserman. Very deep

convolutional networks for large-scale image
recognition. In ICLR, 2015.

22. Vadi, VR. ,Abidin, Shafiqul., Khan, Azimuddin.,
Izhar, Mohd. August, 2022. Enhanced Elman spike
neural network fostered blockchain framework
espoused intrusion detection for securingInternet of
Things network: Transactions on Emerging
Telecommunications Technologies, John Wiley,
ISSN:2161-3915. (SCIE, IF= 3.310, 2021).

23. https://onlinelibrary.wiley.com/doi/10.1002/ett.4634
24. Dhanke, Jyoti,.Rathee, Naveen,.Vinmathi, M S.,

Priya, Janu, S., Abidin, Shafiqul,. October, 2022.
Smart Health Monitoring System with Wireless
Networks to Detect Kidney Diseases: Computational

https://www.apache.org/
https://www.tensorflow.org/lite/models/modify/model_maker
https://www.tensorflow.org/lite/models/modify/model_maker
https://www.tensorflow.org/lite/models/modify/model_maker/image_classification
https://www.tensorflow.org/lite/models/modify/model_maker/image_classification
http://archive.ubuntu.com/ubuntu
https://github.com/mermaid-js/mermaid-live-editor
https://github.com/

International Journal of Engineering Applied Sciences and Technology, 2023
Vol. 8, Issue 02, ISSN No. 2455-2143, Pages 195-202

Published Online June 2023 in IJEAST (http://www.ijeast.com)

202

Intelligence and Neuroscience, ISSN:1687-5273.
(SCI, IF= 3.120).

25. https://www.hindawi.com/journals/cin/2022/3564482
/

26. Biradar, A,.Akram, P S., Abidin, Shafiqul. June,
2022. Massive – MIMO Wireless Solutions in
Backhaul for the 5G Networks: Wireless
Communications and Mobile Computing, Wiley-
Hindawi, ISSN:1530-8669. (SCIE, IF=2.336).

27. https://www.hindawi.com/journals/wcmc/2022/3813
610/

28. Abidin, Shafiqul,.Kumar, Ashok,. Ishrat, M,. et al.
July, 2022. Identification of Disease based on
Symptoms by Employing ML: 5thIEEE International
Conference on Inventive Computation Technologies
(ICICT - 2022), Tribhuvan University, Nepal. IEEE
Xplore Part Number: CFP22F70-ART; ISBN:978-1-
6654-0837-0. pp. 1357-1362.

29. https://ieeexplore.ieee.org/abstract/document/985048
0

30. Sucharitha1, Y., Vinothkumar, S., Vadi, VR., Abidin,
Shafiqul,. Kumar, Naveen. October, 2021. Wireless
Communication Without the Need for Pre-shared
Secrets is Consummate via the use of Spread
Spectrum Technology: Journal of Nuclear Science
and Power Generation Technology (Special Issue),
eISSN: 2325-9809.

31. https://www.scitechnol.com/abstract/wireless-
communication-without-the-need-for-preshared-
secrets-is-consummate-via-the-use-of-spread-
spectrum-technology-17203.html

32. M, Ayasha,. G, Siddharth,.Abidin, Shafiqul,. B,
Bhushan,. July, 2021. B-IoT (Block Chain – Internet
of Things) : A way to enhance IoT security via Block
Chain against various possible attacks: 2nd IEEE
International Conference on Intelligent Computing
Instrumentation and Control Technologies (ICICICT
– 2019). IEEE XPLORE, (ISBN: 978-1-7281-0283-
23). pp. 1100-1104.

33. https://ieeexplore.ieee.org/abstract/document/899314
4

34. Abidin, Shafiqul,.Vadi, VR,. Rana, Ankur,. October,
2019. On Confidentiality, Integrity, Authenticity and
Freshness (CIAF) in WSN: 4th Springer International
Conference on Computer, Communication and
Computational Sciences (IC4S 2019), Bangkok,
Thailand. Publication in Advances in Intelligent
Systems and Computing (ISSN: 2194-5357). pp. 87-
97.

35. https://www.scopus.com/sourceid/5100152904?origi
n=resultslist

36. Vadi, VR,. Kumar, Naveen,.Abidin, S,.Otober, 2019.
Classifying Time – Bound Hierarchical Key
Agreement Schemes: 4th Springer International
Conference on Computer, Communication and

Computational Sciences (IC4S 2019), Bangkok,
Thailand. Publication in Advances in Intelligent
Systems and Computing (ISSN: 2194-5357). pp. 111-
119

37. https://www.scopus.com/sourceid/5100152904?origi
n=resultslist

38. Abidin, S,.Vadi, VR,. Tiwari, Varun,. July, 2020. Big
Data Analysis using R and Hadoop: 2nd Springer
International Conference on Emerging Technologies
in Data Mining and Information Security (IEMIS
2020). Publication in Advances in Intelligent System
and Computing. AISC (ISSN: 2194-5357). pp. 833-
844

39. https://www.scopus.com/sourceid/21100901469?orig
in=resultslist

40. Bhardwaj, J,. G, Siddharth,. Yadav, H,.Abidin, S,.
July, 2020. Taxonomy of Cyber Security in Medical
Science: 2nd Springer International Conference on
Emerging Technologies in Data Mining and
Information Security (IEMIS 2020). Publication in
Advances in Intelligent System and Computing.
AISC (ISSN: 2194-5357). pp. 371-380.

41. https://www.scopus.com/sourceid/21100901469?orig
in=resultslist

42. Abidin, S., Swami, A., Ramirez-Asis, W., Alvarado-
Tolentino, Joseph., Maurya, R, K., Hussain, N., July,
2012. Quantum Cryptography Technique: a way to
Improve Security Challenges in Mobile Cloud
Computing (MCC): Materials Today: Proceedings,
ISSN: 2214-7853. pp. 508-514.

43. https://www.scopus.com/sourceid/21100370037?orig
in=resultslist

44. https://www.researchgate.net/figure/Block-diagram-
of-the-color-detection-system-and-labeled-by-an-
expert-dermatologist-see_fig2_328076333

45. https://www.mathworks.com/help/supportpkg/applei
os/ug/color-detection.html

46. G. Levi and T. Hassner. Age and gender
classification using convolutional neural networks. In
CVPR Workshops, 2015.”

