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Abstract: The field of computer vision has seen rapid 
growth in recent years, with image classification being 
one of the fundamental tasks within the field. In image 
classification, a ‘machine learning algorithm’ is trained 
to identify and categorize objects within an image. Such 
Pre-trained models can be used to save time and 
computational resources, as the model has already 
learned to extract useful features from the data. 
 
Efficient Net-Lite models, MobileNetV2, and ResNet50 
are some of the pre-trained learning models that are 
used for image classification tasks. Tensor Flow Lite 
Model Maker is a library developed by Open AI that 
simplifies the process of adapting a model to specific 
input data, which is necessary when deploying the model 
to run on a device. The library can be used to convert a 
Tensor Flow model into a format that can be run on a 
mobile device, such as a smartphone or tablet. 
 
This paper presents a study on the optimization of image 
classification using neural networks. The study utilizes a 
dataset to train a neural network model and investigate 
the impact of various parameters on the accuracy of the 
model. The dataset is preprocessed to remove any 
outliers and ensure the quality of the data. The neural 
network model is then optimized through the use of 
different architectures and hyper parameters. The study 
shows that the accuracy of the model can be improved 
through the use of various optimization techniques. 
Overall, this research contributes to the growing body of 
knowledge on the optimization of image classification 
using neural networks, and provides insights on how to 
effectively train a model for improved accuracy.” 
 
Keywords: AI, ML, CNN, ANN, Image Classification, 
Optimization, TensorFlow Lite, Accuracy, Framework 

 
I. INTRODUCTION 

There is a tremendous growth in recent years due to 
advancements in ML and DL techniques. Image 
classification is one of the fundamental tasks within 
computer vision, where a machine learning algorithm is 
trained to identify and categorize objects within an image. 
During training, the algorithm learns to associate certain 
features within the image with specific classes. Once 
training is complete, the algorithm can then be applied to 
new, unseen images and predict the class label for each 
image based on the features it has learned to recognize. 

 

Fig.1 : shows the process to train the algorithm on labeled 
images with class labels and applying it to new images by 
recognizing learned features to predict class labels. 
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Pre-trained models are machine learning models that have 
already been trained on a large dataset and can be used for 
tasks in similar domains with minimal additional training. 
By using pre-trained models, one can save time and 
computational resources as the model has already learned to 
extract useful features from the data. EfficientNet-Lite 
models, MobileNetV2, and ResNet50 are some of the pre-
trained ML models that are used for image classification 
tasks. 
TensorFlow Lite Model Maker is a library developed by 
OpenAI to make it easier to use TensorFlow neural network 
models for on-device machine learning applications. The 
library can be used to convert a TensorFlow model into a 
format that can be run on a mobile device, such as a smart 
phone or tablet. 
This paper is on the optimization of image classification 
using NN. The study uses a dataset to train a NN model and 
explores the impact of various parameters on the accuracy 
of the model. The dataset is preprocessed to ensure the 
quality of the data, and the neural network model is 
optimized using different architectures and hyper 
parameters. The accuracy of the model can be increased by 
various optimization techniques, such as adjusting the 
learning rate, using different activation functions, and 
adding more layers to the network. 
The findings of this study provide insights on how to 
effectively train a model for improved accuracy in image 
classification tasks. The study also highlights the 
importance of pre-trained models and libraries such as 
TensorFlow Lite Model Maker in the field of computer 
vision. By using pre-trained models and optimizing the 
neural network model, one can improve the accuracy of 
image classification tasks and create more robust and 
effective computer vision applications. 
 

II. RELATED WORK 
TensorFlow Lite Model Maker is related to several other 
libraries and tools in the TensorFlow ecosystem that are 
used for ML tasks. Here are some of the related works for 
TensorFlow Lite Model Maker: TensorFlow: TensorFlow 
Lite Model Maker is a high-level library built on top of 
TensorFlow, and it is designed to make it easier to use 
TensorFlow models for deployment on resource-constrained 
devices.  
TensorFlow Lite: TensorFlow Lite is a lightweight and 
efficient version of TensorFlow that is optimized for 
“deployment on resource-constrained devices”.  AutoML is 
a subfield of machine learning that focuses on automating 
the process of model training and deployment. TensorFlow 
Lite Model Maker provides a set of pre-made models and 
tools for fine-tuning these models, which makes it easier to 
use machine learning models without having to write 
complex code. PyTorch Mobile: PyTorch Mobile is a 
similar library to TensorFlow Lite Model Maker, but it is 
built on top of PyTorch, which is another popular machine 

learning framework. Like TensorFlow Lite Model Maker, 
PyTorch Mobile provides a simple way to adapt and convert 
machine learning models for deployment on mobile devices. 
“This paper[1] presents a survey on image classification 
models based on convolution neural networks (CNNs). 
CNNs have become the state-of-the-art technique for image 
classification tasks due to their ability to effectively learn 
and extract features from raw image data. The paper starts 
by introducing the basic concepts of CNNs and their 
architecture. Then, it reviews various CNN-based image 
classification models proposed in the literature, including 
LeNet-5, AlexNet, VGG, GoogLeNet, ResNet, DenseNet, 
and MobileNet. For each model, the paper describes its 
architecture, training strategies, and performance on 
benchmark datasets such as CIFAR-10, CIFAR-100, and 
ImageNet. The paper also discusses the challenges and 
future research directions in CNN-based image 
classification, such as model compression and acceleration, 
transfer learning, and multi-modal learning. Overall, this 
paper provides a comprehensive overview of CNN-based 
image classification models and their potential applications 
in various domains. 
The paper proposes [2] a novel method for unsupervised 
transfer learning through multi-scale convolution sparse 
coding (MSCSC) for biomedical applications. The proposed 
approach aims to learn common features from a large 
amount of unlabeled data and transfer them to related tasks 
in a new domain. The effectiveness of the method is 
demonstrated through experiments on two different 
biomedical datasets. 
In this work[3], K. van de Sande, T. Gevers, and C. Snoek 
evaluate and compare various color descriptors for object 
and scene recognition. The study examines the performance 
of various color descriptors, including RGB, HSV, 
Opponent Color Space, and various color moments, on a 
large dataset of images. The authors demonstrate that 
certain color descriptors perform better than others in 
different applications, and provide insights into the factors 
that affect their performance. Overall, this study provides a 
useful reference for researchers working in the field of 
computer vision and image recognition. 
The paper[4] presents a study on the use of convolutional 
neural networks (CNN) for image classification tasks. The 
authors investigate the impact of various parameters on the 
accuracy of the CNN model, including the number of layers 
and filters. The study shows that the CNN model can 
achieve high accuracy in image classification tasks, and 
highlights the potential of using CNNs for real-world 
applications. This research was presented at the 2018 Fourth 
International Conference on Research in Computational 
Intelligence and Communication Networks (ICRCICN) held 
in Kolkata, India. 
The paper [5] explores the concept of data augmentation in 
deep learning for image classification tasks. The authors 
propose various techniques for generating additional 
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training data to improve the accuracy of convolutional 
neural networks. They conduct experiments on benchmark 
datasets and demonstrate the effectiveness of data 
augmentation in improving the classification accuracy. The 
paper was presented at the 2018 International 
Interdisciplinary PhD Workshop (IIPhDW) held in 
Świnouście, Poland.” 
 

III. PROPOSED APPROACH 
The study utilizes a dataset to train a NN model and 
investigate the impact of various parameters on the accuracy 
of the model. The dataset is preprocessed to remove any 
outliers and ensure the quality of the data. The model is then 
optimized through the use of different architectures and 
hyper parameters. The study shows that the accuracy of the 
model can be enhanced by the use of various optimization 
techniques.  

 

Fig.2 : shows the process that begins with the user 
providing a labeled dataset, which is used to train the 
algorithm. After training, the algorithm's accuracy is 

validated and it is then used to predict the class labels of 
new images based on learned features. 

 
This research is a study on the optimization of image 
classification using NN. Datasets are trained in a NN model 
and investigate the impact of various parameters on the 
accuracy of the model. The dataset is preprocessed to 
remove any outliers and ensure the quality. The “neural 
network model” is then optimized through the use of 
different architectures and hyper parameters. 
The first step in the study was to acquire a dataset. 
Specifically, the input data consists of a flower dataset 
containing images that are categorized into 5 distinct 
classes. To organize the dataset, each class is placed in its 
own subdirectory within a larger directory structure. To 
access the images, the dataset needs to be downloaded in an 
archive format and then extracted using a tar utility. The 

study utilized the TensorFlow library to preprocess the data, 
which involved normalizing the pixel values and performing 
one-hot encoding on the labels. 
 

 

Fig.3 : shows that the flower dataset is first inputted, and then a 
directory structure is created to organize the data based on the 

five different classes (Tulip, Daisy, Rose, Sunflower, and 
Dandelion). Each class is placed in its own subdirectory within 

the larger directory structure 
 
The study then investigated the impact of various 
parameters on the acc of the model. The parameters 
included the “number of layers in the model, the activation 
functions, the learning rate, and the batch size”.  
In conclusion, “this study demonstrates the effectiveness of 
neural networks for image classification tasks and highlights 
the importance of optimizing the various parameters and 
architecture of the model to achieve the best possible 
accuracy. The study also emphasizes the importance of data 
preprocessing and data augmentation in improving the 
quality of the data and the accuracy of the model. Overall, 
this research contributes to the growing body of knowledge 
on the optimization of image classification using neural 
networks and provides insights on how to effectively train a 
model for improved accuracy.” 
 

IV. EVALUATION AND ANALYSIS 
pip install -q tflite-model-maker has been used to install the 
"tflite-model-maker" library using the Python package 
manager. The purpose of installing the tflite-model-maker 
library is to provide a bunch of tools for getting trained and 
converted models for deployment on mobile and embedded 
devices. This library is built on top of TensorFlow Lite and 
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provides a simple way to perform transfer learning and fine-
tune pre-made models for a specific task. while  the purpose 
of installing the libportaudio2 library is to provide support 
for audio input and output, which is required by some 
applications. 
 
Importing the "os" library, which provides a way to interact 
with the operating system. Similarlynumpy as np is 
importing the "numpy" library is a library for scientific 
computing in Python, and is commonly used for working 
with arrays and matrices. Importing tensorflow as tf is for  
"tensorflow". The code also includes lines to import various 
classes and functions from the tflite_model_maker library. 
The model_spec module provides a set of pre-made models 
for common machine learning tasks, the image_classifier 
module provides a set of tools for performing image 
classification, and the DataLoader class provides a way to 
load and preprocess data for training.The final line import 
matplotlib. pyplot as plt is importing the "matplotlib.pyplot" 
library and giving it an alias of "plt".  
 
“data = DataLoader.from_folder(image_path) 
train_data, test_data = data.split(0.9)” 
 
The first line, data = DataLoader.from_folder(image_path), 
creates an instance of the DataLoader class and loads the 
image data from the folder specified by image_path. This 
class provides methods for loading and preprocessing data 
for training and inference. 
The second line, train_data, test_data = data.split(0.9), splits 
the loaded data into two sets: training data and testing data. 
The split is done by dividing the data into two parts, where 
the first part contains 90% of the data and the second part 
contains the remaining 10%. The resulting train_data set 
will contain 90% of the images and the test_data set will 
contain the remaining 10%.  
The output of the code model = 
image_classifier.create(train_data) is a trained image 
classification model of “TensorFlow Lite Model Maker 
library.” The image_classifier.create function takes the 
training data train_data as an input, and trains a neural 
network model on this data. The function then returns the 
trained model, which is stored in the variable model. This 
model can then be used to make predictions about the class 
of new input images. The trained model created by this code 
will have learned to recognize different classes of images 
based on the patterns and features present in the training 
data. This model can then be used for a variety of 
applications, such as recognizing and classifying objects in 
real-time on a mobile device. 
It has a total of 3,420,710 parameters, which are the weights 
and biases that the model uses to make predictions. Of these 
parameters, 7,686 are trainable, which means that they are 
adjusted during training to improve the model's accuracy. 
The remaining 3,413,024 parameters are non-trainable, 

which means that they are fixed and do not change during 
training. These non-trainable parameters may include pre-
trained weights from other models, or they may be fixed to 
enforce certain constraints or regularizations. 
The number of epochs used in the image_classifier.create 
function from the TensorFlow Lite Model Maker library is 5 
to 20 and results are as follows as number of epochs can be 
customized by passing a train_epochs argument to the create 
function.  
 
“Total params: 3,419,429 
Trainable params: 6,405 
Non-trainable params: 3,413,024 
_______________________________________________
__________________ 
None 
Epoch 1/5 
103/103 [============+====] - 283s 3s/step - loss: 
0.8786 - accuracy: 0.7646 
Epoch 2/5 
103/103 [===============] - 20s 196ms/step - loss: 
0.6566 - accuracy: 0.8956 
Epoch 3/5 
103/103 [===============] - 20s 194ms/step - loss: 
0.6221 - accuracy: 0.9160 
Epoch 4/5 
103/103 [===============] - 23s 220ms/step - loss: 
0.6007 - accuracy: 0.9232 
Epoch 5/5 
103/103 [===============] - 19s 188ms/step - loss: 
0.5881 - accuracy: 0.9378” 
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Fig. 4 : shows  the results of epochs used 5-10 during 

training are having  a significant impact on the 
performance of the model. 

 
To Conclude: “As the model trains, the loss decreases and 
the accuracy increases, indicating that the model is 
learning to correctly classify the images in the dataset. By 
the end of the training process, the model has achieved a 
high accuracy of 95.63% on the training set. The trained 
model can then be used to predict the labels of new, unseen 
images.” 

 

 
Fig. 5 and 6  : shows  acc increases and loss decreases 

 
Fig. 7 : shows  the same trends 

 
Fig. 8 : shows  the results  and it appears that the model's 
loss decreases and accuracy increases with each epoch up 

to epoch 15. Beyond that point, the loss and accuracy seem 
to plateau, indicating that further training may not result in 

significant improvements. 
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Fig. 9 and 10 : compares all the models and conclude the 

same 
 
Based on the above results for the different number of 
epochs, we can observe the following trends: 
Loss is slowing down, this is expected since the model is 
learning from more training data and adjusting its weights to 
minimize the loss. Accuracy slop up, this is also expected 
since the model is getting better at predicting the correct 
labels as it is exposed to more training data. 
As the number of epochs increases, the rate of improvement 
in both loss and accuracy starts to slow down. This suggests 
that the model is starting to reach its performance limit, and 
further training may not yield significant improvements. 
Overfitting may occur as the number of epochs increases. 
This can be observed in the accuracy score on the training 
set being significantly higher than the accuracy score on the 
validation set. This implies that the model is starting to 
memorize the data rather than learning to generalize to new 
data. So, it is important to balance the number of epochs 

with the risk of over fitting to achieve the best performance 
on new, unseen data. 

The number of parameters in a model can impact 
its performance and the computational resources it requires, 
so it's important to consider when designing and deploying 
models. 
 
Further , 12/12 [==============================] 
- 39s 3s/step - loss: 0.5934 - accuracy: 0.9237 
This is the output of the model evaluation step, which 
measures the performance of the model on the test data. The 
output shows the progress of the evaluation, with the current 
batch and the total number of batches. The output shows 
that all 12 batches have been processed. 
The loss is a measure of how well the model is able to 
predict the correct class for the input images, while accuracy 
is the number of correct predictions divided by the total 
number of predictions. In this case, the loss is 0.5934 and 
the accuracy is 0.9237, which means that the model has 
correctly predicted the class for 92.37% of the test images. 
The output "12/12" indicates the progress of the evaluation 
process. In this case, the evaluation is being performed on 
12 batches of data, and the current batch is the 12th one. 
The "12/12" output shows that the evaluation process is 
complete and all 12 batches of data have been processed. 
import tensorflow as tf 
 

V. DISCUSSION AND FUTURE WORK 
The code presented shows how to use the “TensorFlow Lite 
Model Maker” library to create a “pre-trained model for 
image classification”. The library provides a set of pre-made 
models for common machine learning tasks and a set of 
tools for fine-tuning and deploying models on mobile and 
embedded devices. The code also imports various libraries 
for scientific computing and visualization, such as numpy 
and matplotlib.pyplot. 
The DataLoader class is used to load and preprocess the 
image data for training and testing. The data is then split 
into two sets, where 90%  for training and remaining 10% 
for testing. This is a common practice in machine learning 
to evaluate the model's performance on unseen data. 
The image_classifier.create function is then used to create a 
model using the training data. The trained model is stored in 
the model variable and can be used to make predictions 
about the class of new input images. 
One limitation of the code is that it does not write the 
number of epochs used during training. The default number  
is relatively small, that is 5 to train the model. However, the 
number of epochs can be customized by passing a 
train_epochs argument to the function.  
Future work could involve using this pre-trained model for a 
specific image classification task and evaluating its 
performance on real-world data. The model could also be 
fine-tuned on a new dataset to improve its performance on a 
specific task. Additionally, the code could be extended to 
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support other machine learning tasks, such as object 
detection or natural language processing, using the pre-
made models provided by the TensorFlow Lite Model 
Maker library. 
Moving forward, there are several ways we can extend our 
work for different applications: 
One can also customize the model architecture for specific 
application. This could involve changing the : “number of 
layers, the size of the layers, or the activation functions used 
in the model”. 
One can also fine-tune the model on your specific dataset to 
improve its performance. Fine-tuning involves training the 
model on a small amount of data specific to your 
application, while keeping the pre-trained weights fixed. 
This can be a powerful technique for improving model 
performance on specific tasks. 
Once we have a trained image classification model, we can 
deploy it on mobile and embedded devices using 
TensorFlow Lite. This involves converting the model to a 
TensorFlow Lite format, which is optimized for mobile and 
embedded devices, and then integrating the model into your 
application. This can be a complex process, but there are 
resources available to help you get started, such as the 
TensorFlow Lite documentation and the TensorFlow Lite 
Model Maker examples. 
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